Welcome to the Wilcox Family weB LOG, your source for the latest Wilcox news, anecdotes, and rants; and, as Jack Benny quipped on his first radio show (March 29, 1932), “There will be a slight pause while you say, ‘Who cares?’â€â€
For Father’s Day, let me introduce you to four fathers I have had. The last one will blow you away. (And that’s not just clickbait.)
Here they are, in order of when I learned of them.
(1)Paul J. Wilcox, Jr. Pictured with my adoptive mother Addie is my adoptive father. I met him when I was 8 or 9 months old. Dad was supremely practical. For example, when I was born I was diagnosed as retarded. He declared, “Well, if he’s not going to work with his head, we will teach him to work with his hands,” and for Christmas after my second birthday I got a toolbox with real tools (the toolbox and some of the tools I still have). Dad, a lifelong refrigeration technician, was skilled at repairing everything except modern home refrigerators and cars, and could build just about anything. He taught me many skills that I still use today.
(2) R Michael Frenchman. Pictured with one of the most loving people I have ever met, his wife Karen Crowe, is Michael Frenchman. He was labeled my father by my biological mother, who misled people in that respect. We met when I was in my 20s. Michael is indeed a Renaissance man, doing everything from working with UN programs, to being an independent reporter in Iran, to mentoring high school students in videography and animation, to producing live theater and video projects. Getting to know him has been one of the delights of my life. (He even inspired me to get my SCUBA certification.) Michael, along with my biological mother, made the prudent decision to place me for adoption, knowing their own lives were too chaotic at the time to raise a child.
(3) George Fortini, also pictured with my Mom. A few years after my Dad‘’’s death, Mom remarried George when she was 80 years old. The next few years were wonderfully happy for them, although Mom outlived him as well. George was crazily in love with my mother, and fit in well with the family. He wasn’t Dad, but pretty close, except with an even better sense of humor and cooking ability. Most important, he was wonderful for my Mom.
(4) Michael “Mickey” Rachlin. Well, this is the big surprise! After decades of searching, and over a decade of DNA sleuthing in search of my biological father, my cousin Audrey texted me last August and said, “I think I’ve cracked your case … but first, was there any reason you know of for your [biological] mother to have been in Texas?” I haven’t gotten to meet Mickey, as he passed away in July of 2020, before I was able to locate him. He never knew I existed, but, it is clear from other examples in his life that he would have loved to learn he had a son. He was the only child of Ezra Rachlin, who himself was a child prodigy pianist and conductor of, among others, the London Symphony Orchestra. I am still learning about Mickey through people in the family, but solving this mystery and expanding my known family has been huge, as you might imagine! I feel like I can only write in superlatives! I’m still learning what we had in common, but heard, from a stepsister, something I never was sure I would: “Oh my gosh, you look just like him!”
One of the things we’re doing to pass the time is winding down the day with a “good” pandemic flick. So far, we’re only gotten through two. I’ll update this post as we get through more. Spoiler alert: I’ll be careful not to give too much away, but can’t guarantee a no-spoiler review.
First up was The Andromeda Strain (1971, IMDB score: 7.2). Two films and one miniseries have been based on this early novel by Michael Crichton, and this is generally considered the best of them. If nothing else, it’s the one that adheres closest to the book.
In today’s every-film-is-a-blockbuster world, one tends to forget that, due to technical, economic, and other constraints, films were often extremely poorly paced, chaotic, and somewhat boring. There’s almost no background score for the film, and what’s there is entirely forgettable. Though the sterile technique is relatively good in this, it’s far from perfect; science is only so-so. Performances are decent, and one item of note is that this is probably the last time in film that a supermodel prototype was not used for a female scientist. It also reminded us that people used to smoke.
Outbreak (1995, IMDB score: 6.6) Horrible sterile technique, mostly poor science (although some good basic virology) and an entire military branch that refuses to obey orders. Excellent makeup for disease effects. (Bonus: Ebola-type viruses cause one’s hair to lose its curl as the disease progresses. Who knew?) Dustin Hoffman and cast provide credible performances while behaving incredibly, although the basic scenario is plausible. There’s a conspiracy-driven sub plot that doesn’t quite fit. Hoffman seems schizoid when it comes to protecting the world from an Ebola-type outbreak. He’s determined to cure it, but becomes positively reckless in his investigation.
We then tackled The Hot Zone, a National Geographic miniseries based on Richard Preston’s excellent account of the same name. (2019, IMDB score: 7.3). This was an only-moderately dramatized version of real events, with which I was familiar from reading Preston’s book. This scored extremely well on the science, and captures the horror of viral hemorrhagic fevers. The world can be very grateful that this strain only affected monkeys.
(Updated on January 31, 2021.) It took us a while, but we finally returned to another pandemic film: Contagion (2011, IMDB score: 6.7). This film deals with a global pandemic of a mutated zoonotic virus with a rapid, 25% mortality rate and an R0 of 4, a true “doomsday scenario.” What’s impressive is how much of the societal effects this film gets right, as we now have a case study of a pandemic with a mostly low but widely varied mortality rate (highly affected by age) and an R0 that ranges from 1.4 to 3.9 (according to Medscape). There are food shortages and hoarding, social media propagators of disinformation, and a CDC sometimes hamstrung by politics. The scenes of empty stores, shopping malls, and gyms were particularly poignant. The precautions taken by scientists are sound, and feel very real, and the science is pretty good, if slightly vague, until the end, where a single act becomes a deus ex machina. Our own experiences have made this film seem far more authentic than we would have realized; I don’t think we would have appreciated it as much in 2011.
This is the final version of a literacy narrative, originally written for UMass Lowell (online) College Writing I, Sec. 031, Professor Richard Keating, October 15, 2018. (Note to plagiarists: This has been submitted to the TurnItIn database, <sarcasm>so, by all means, copy away</sarcasm>.)
Douglas Wilcox Richard Keating UML College Writing I, Sec. 031 October 15, 2018
The same year Star Wars was released, I met my first real computer: a Digital Equipment Corporation (DEC) PDP-8, at my town’s high school. Each terminal connected to this computer was a repurposed teletype machine. There was no screen display, only a nearly-endlessly spooling roll of paper. Each keystroke from the operator or each character output from the PDP was accompanied by a wonderfully complex sound of motors and servos moving the print element and its carriage across the platen, and hammering the right letter onto the paper (262LongRunner).
I was in love.
Through another school program, I got to play on a PDP-40, a massive device that would have made the PDP-8 weep with inferiority, had it been sentient. There I discovered the text adventure “Dungeon†(nee Zork) (Anderson, Kidder).
Creating my own text adventure game became my obsession. I had grand visions. I spent hours creating maps, and working to figure out subroutines that would be able to interpret user input, track inventory, handle world descriptions and actions, and even inject some humor while tracking hunger and thirst—“You would kill for a baloney-and-cheese sandwich.†There was no way for me to do a program this large on the DEC, but the Apple IIs that the junior high had would be perfect. They even had floppy drives, so I could store this creation on my own 5¼” diskette.
Not owning my own computer, I had to work offline—truly offline. I worked in notebooks, keeping the program flow in my head, and writing the code in longhand for later entry and debugging. I had the inspiration and functional model from other, better-written software, and a clear idea of what I wanted to do. I just had to figure out how.
A text adventure needs to provide a description of each location or room, and anything that might be portable in that room. The program needs to track the player’s location, and allow the player to move through the game world. My solution for handling this was effective, but contraindicated by speed and memory limitations at the time. The key was arrays—the computer equivalent of a numbered stack of index cards. I used an array of alphanumeric variables as a container, storing the description for each of the game’s locations by element number in the array. So, if the player moved to “location 104,†the description could be displayed by returning the description in “card†104.That system was great for things which stayed in place, but what about portable items? For that I had to push further, but was still able to use an array structure. I invented a design where each portable item would be assigned to an item number in an array, and the data for that item would be stored in a predetermined portion of a text variable that contained, among other things, the item’s description. In the metaphor of the index cards, we might imagine that specific lines on each card record a specific kind of data, such as consistently having a title on the first line of every card.
Player movement could be controlled by setting the player’s location to a particular number corresponding to the description array and item locations. Switching the location was just a matter of coding which direction’s movement would take one to which location number and using that number to access the description and item arrays.
When I finally got enough of the modules coded and debugged, I ran it. It worked! It was slow—but it worked.
Now I work full time as a programmer, as I have for more than 15 years, and every part of my workday involves applying digital literacy directly to solving programming problems. I use my store of those skills and a variety software tools to accomplish this. The problems I solve are far more complicated—although they often still involve arrays—but they apply all the digital skills and literacy that began when I was smitten by the PDP-8, in all its teletype-driven glory.
Phase 2: Analysis
The rapid development of digital technologies in the digital era presents individuals in the emerging information society with situations that require them to employ a growing assortment of cognitive skills in order to perform and solve problems in digital environments. These skills are often referred to as “digital literacy†(Gilster, 1997; Inoue et al., 1997; Lanham, 1995; Pool, 1997), which is presented as a special kind of mindset that enables users to perform intuitively in digital environments, and to easily and effectively access the wide range of knowledge embedded in these environments (Gilster, 1997; Tapscott, 1998; EshetAlkalai, 2004; 2005) (Aviram and EshetAlkalai 1, emphasis mine).
The experience described in this narrative pertains to the phrase: “to perform and solve problems.†Problem-solving is the aspect of digital literacy that is most important in my life and career.
My first digital literacy skills were not very impressive, and many are now accessible by toddlers in today’s world of icons and GUIs: reading a directory, loading a program, running that program, and interacting with its prompts and output. Looking back over my computer literacy from childhood through the early days of my computer career, it is clear that my very meanest skills were a foundation of understanding that lasted for decades.
I worked in notebooks, keeping the program flow in my head, and writing the code in longhand for later entry and debugging.
Although the problems I solve are now more complex, the instant availability of explanations, sample code, and often complete example projects available online can make the level of problem solving significantly different. Given my skill level at the time, my limited access to computers, the nonexistence of the Internet, and a lack of established patterns, there was more room for innovation at a basic level. Innovation is still significant, but it tends to occur
I spent hours creating maps, and working to figure out subroutines that would be able to interpret user input, track inventory, handle world descriptions and actions, and even inject some humor while tracking hunger and thirst….
It was somewhat surprising to explore this time period, and to renew my awareness of just how exhilarating computer tasks were. I was able to continually improve programming concepts and problem-solving by my sometimes weak attempts to replicate things I had seen. Writing my own text adventure was a wonderfully motivating force for improving my programming and the problem-solving that went along with it. I still advise those who want to learn a new platform on language to think of something that they really want to build as a first project.
That system was great for things which stayed in place, but what about portable items? For that I had to push further.
Although it is true that I knew far less, I was also working with a programming language that was more limited in its abilities, and accomplishing what I wanted often required a finer-grained ingenuity.
The “growing assortment of cognitive skills†(Aviram and EshetAlkalai) is particularly evident in the development of problem-solving. Like any cognitive skill practice, problem-solving begets even more refined problem-solving, leading to gains in the complexity of problems that can be solved, and the ease with which they can be solved.
Kidder, Tracy. The Soul of a New Machine. Little, Brown and Company, 2000. Print.
Feedback
Professor Keating’s Final Response:
Hi Doug,
As I read the final version of this exceptionally well revised essay, I reflect on how the vast majority of my students see digital literacy in terms of language, or a lexicon of terms common to a discipline. You see it in terms of a numerical logic, a binary code of understanding. That’s just as applicable, different cognition, same result!
This was a relatively early draft and analysis of a literacy narrative, originally written for UMass Lowell (online) College Writing I, Sec. 031, Professor Richard Keating, September 30, 2018. The more concise version will be published separately. (Note to plagiarists: This has been submitted to the TurnItIn database, <sarcasm>so, by all means, copy away</sarcasm>.)
I loved writing this essay, but desperately needed to cut it down to a much smaller size and intense focus. (That was the hardest part of the work.) Still, this history of my first exposure to computers is something I wanted to publish. The final version of this essay is here: Romancing the Code: The Literacy Narrative I Did Write.
Computers in Digital Literacy: Problem-Solvers versus
Problem-Solving
Phase 1: Literacy Narrative
When I was nine years old, the world of science fiction changed
with the release of Star Wars. The
film is, of course, merely space opera, and more fitting of the term science fantasy than science fiction, but it was remarkable
for its technical presentation and fully realized worldbuilding, rather than
for its originality or brilliance of story. (See Campbell, 2008.)
In much of twentieth century science fiction, computers are
autonomous problem-solvers. They are almost never programmed by humans. A query
is made, and the computer—via punched paper, data cards, audible output, or
screen display—provides the answer to an enormously complex problem. The idea
of a computer as a tool is reduced to its metanarrative: The computer is
godlike—omniscient and often omnipresent—and not necessarily benign. Star Wars avoided this trope, turning
sentient, autonomous computers into a digital underclass—droids—while
presenting computers with which “humans†would directly interact in a way that
was more akin to our current state of the art. The Star Wars world includes custom-purposed computer appliances, such
as a “navicomputer†(Wookiepedia), as well as networked data storage and
retrieval devices that would not be out of place in our own world. Although we
use computers to solve a vast number of problems in everyday life, even
commonly as our own navicomputer devices, it is the act of programming itself
which provides me the greatest problem-solving experience.
The same year Star Wars was released, I met my first real computer: a Digital Equipment Corporation (DEC) PDP-8 (Fig. 1) at my town’s high school. Each terminal connected to this computer was a repurposed teletype machine (Fig. 2). There was no screen display, only a nearly-endlessly spooling roll of paper. Each keystroke from the operator or each character output from the PDP was accompanied by a wonderfully complex sound of motors and servos moving the print element and its carriage across the platen, and hammering the right letter onto the paper (262LongRunner). This sound was so iconic that we continue to associate it with the background noises of the era’s television newsrooms.
At age nine, with no previous experience with computers, I was incapable of using them for anything beyond running simple math programs written by high school students. It is difficult to appreciate now, but in a world where pocket calculators were relatively rare, having a computer prompt for two numbers and then displaying their product or dividend was a marvel.
Beyond such number-crunching, computers immediately proved
to be greatly entertaining. I ran student-written programs such as “Guess,†in
which the user would enter a number between 1 and 100, and the computer would
respond with, “Too high,†or “Too low.†I printed text-based art, my favorite
being a cartoon of Snoopy, shaking his fist and saying, “Curse you, Red Baron!â€
(Fig. 3). One could print banners of words where each letter in the banner’s
text was composed of many smaller letters. I printed calendars for the current
year, my birth year, and the unbelievably far-off year 2000.
I was in love.
This elementary-school experience did nothing to assuage my longing to use computers. Through another school program I got to play on a PDP-40 at a nearby enterprise, a massive device that would have made the PDP-8 weep with inferiority, had it been sentient. There I discovered the text adventure “Dungeon†(later and more commonly known as Zork) (Anderson, Kidder). I was enthralled with text adventures. I was determined to program my own.
In my junior high years, we had access to Apple II computers repackaged by Bell & Howell to be nearly indestructible. We also secured access to the PDP-8 at the high school. By this time the teletype machines were gone, replaced mostly by dot-matrix printers from DEC, and supplemented by three glorious CRT terminals, VT05s (Fig. 4). DEC had donated these CRTs to my junior high school’s HAL (High Ability Learner) program, but I was the first to negotiate access to them. I stayed after school until 5:00 every day I could, just to get time on these. I began to learn BASIC, back in the ancient times when it still required line numbers.
Not having a computer of my own presented a problem that
might seem odd today. I had to work offline—truly offline—without even a search
engine, and then try to code what I had done in the time I could get access to
the computer. So, I worked in notebooks, keeping the program flow in my head,
and writing the code in longhand that I would hope to later enter and perfect.
I tried my hand at a number of different programs, but creating
my own text adventure game became my obsession. My first attempt at a text
adventure was quite limited. It offered nothing more than multiple-choice prompts
to make action choices, a far cry from the verb-object command-parsing that
Zork could do. My program was shameful, borrowing scenes and catch phrases from
Tom Baker’s incarnation of Dr. Who, and not much more complex than a
choose-your-own-adventure book. One-quarter of the way through, I ran the
program, and the computer spit out an inexplicable error. It was not the usual
problem of a missing parenthesis or a syntax error, but something I could not
diagnose.
“Doc†(Donald Harrison), the high school’s computer science
teacher, helped me out. Although my program was tiny, it was too big for the
execution space on the PDP-8. He taught me how to link multiple programs so I
could jump to one from another, and I was able to complete my first adventure.
It did teach me the basics of programming, even though what I wrote was not
much more than a pile of print and goto statements, hooked together with the
occasional numeric input. Even so, knowledge of programming meant
problem-solving.
I had grander visions. My next adventure was more original.
I spent hours creating maps, this time avoiding established fandom, and more
time figuring out subroutines that would be able to interpret input, track
inventory, handle world descriptions and actions, and even inject some humor
while tracking hunger and thirst—“You would kill for a baloney-and-cheese
sandwich.†There was no way for me to do a program this large on the DEC, but the
Apple IIs that the junior high had would be perfect (Fig. 5). They even had
floppy drives, so I could store my creations on my own 5¼” diskette.
Innovation was exhilarating.
There were no obvious patterns to follow, and the BASIC language itself was somewhat limited. There were no premade frameworks. I had books, which were very limited, and often inapplicable to a particular system just when I needed to learn something advanced. (The deeper one went, the less universal computer languages with the same name became—radically different from today’s write-once-deploy-everywhere languages like Java.) I had the inspiration and functional model from other, better-written software, and a clear idea of what I wanted to do. I just did not know how.
In a text adventure, one of the most important things is providing a description of each location or room, and anything that might be movable in that room. In that context, the program needs to track the player’s location, and allow the player to move in a specific direction, such as “move north.†My solution may have been clever, if contraindicated by speed or memory limitations at the time. I used an array (something like a deck of cards) of alphanumeric variables as a container, storing the location description for each “room†by element number in the array. So, if the player moved to “location 104,†the description could be displayed by accessing a function that would return the description in “card†104.That system was great for things which stayed in place, but what about portable items? For that I had to push further, and I invented a design which was not dissimilar to what is now called a bitmap. Each portable item would have an item number, but the data for that item would be stored in a predetermined part of a text variable that contained, among other things, the item’s description. In a simple example, the first three characters of the text variable might contain the location number, which could even be a number showing it to be in the player’s own inventory. The description of the item would then be the fourth character in the text to the end of it. Now we use object-oriented languages to create models of such things, in a way that often mimics the real world. A car is often used to illustrate this. A car is a generalized object, and has properties such as color, model, size, number of passengers, make, year of manufacture, or VIN.
Player movement could be controlled by setting the player’s
location to a particular number, and the same location number could be used to
get the description of the location and then display any portable items that
were there. Switching the location was just a matter of coding which direction’s
movement would take one to which location number.
When I finally got enough of the modules coded and debugged,
I ran it. It worked! There was one last problem: speed. Between entering a
command and waiting for the program to do something was a pause of 5 or 10
seconds. But it worked.
More than a decade later, I encountered the published source
code of Zork (and even got it to run in a Windows FORTRAN environment). I was
blown away by the simplicity of Zork’s code. The huge, complicated processing
modules I had created were not used. Zork had a simple data structure, with a
number of pointers, in some ways similar to my array-storage design, but
infinitely more elegant.
Now I work full time as a programmer, as I have for more
than 15 years, and every part of my workday involves applying digital literacy
directly to solving programming problems, ensuring our software is secure, and giving
our customers new or better experiences. I use a dizzying array of software
tools to accomplish this. The problems I solve are far more complicated, but
they apply all the digital skills and literacy that began when I was smitten by
the PDP-8, in all its teletype-driven glory.
Someday, we may indeed interact with our computers like much
of our science fiction predicted. When that day arrives, however, it will
surely include its own tangle of media literacy problems to be solved.
Phase 2: Analysis
The rapid development of digital technologies in the digital era presents individuals in the emerging information society with situations that require them to employ a growing assortment of cognitive skills in order to perform and solve problems in digital environments. These skills are often referred to as “digital literacy†(Gilster, 1997; Inoue et al., 1997; Lanham, 1995; Pool, 1997), which is presented as a special kind of mindset that enables users to perform intuitively in digital environments, and to easily and effectively access the wide range of knowledge embedded in these environments (Gilster, 1997; Tapscott, 1998; EshetAlkalai, 2004; 2005). (Aviram and EshetAlkalai, 2006, emphasis mine)
My experience, described in this narrative, tends to present
two foci: “a
growing assortment of cognitive skills†and “to perform and solve problems.â€
Although the two are intrinsically linked, problem-solving is the one that is
most unique to my own narrative., and the one that is most important in my life
and career.
So, I worked in notebooks, keeping the program flow in my head, and writing the code in longhand that I would hope to later enter and perfect.
My first skills were not very impressive, and are now
accessible by toddlers in today’s world of icons and GUIs: reading a directory,
loading a program, running that program, and then interacting with its prompts
and output. Tracing computer literacy from childhood through the early days of
my computer career, it is clear that my very meanest skills were a foundation
of understanding that lasted for decades. (RUNH
was the command used to launch a program, and I only recently learned that that
it was used to launch a FORTRAN module on the PDP.)
I spent hours creating maps, this time avoiding established fandom, and more time figuring out subroutines that would be able to interpret input, track inventory, handle world descriptions and actions, and even inject some humor while tracking hunger and thirst….
It was somewhat surprising to explore this time period, and
to renew my awareness of just how exhilarating computer tasks were. Computers
were often about games. I was able to continually improve programming concepts
and problem-solving by my somewhat weak attempts to replicate things I had
seen. Writing my own text adventure was a motivating force for improving my
programming and the problem-solving that went along with it.
There were no obvious patterns to follow, and the BASIC language itself was somewhat limited. There were no premade frameworks. I had books, which were very limited, and often inapplicable to a particular system just when I needed to learn something advanced.
Although the problems I solve are now more complex, the
instant availability of explanations, sample code, and often complete example
projects can make the level of problem solving significantly different.
Although it is true that I knew far less, I was also working with a programming
language that was more limited in its abilities, and accomplishing what I
wanted often required a finer grained ingenuity.
Okay, wanna see something really cool? (Actually, it’s kinda hot …)
Below is a cropped image from a 1969 National Geographic map of the seafloor, showing the Pacific basin. What’s the cool part? See that long, almost L-shaped line of ridges and seamounts and islands that has Hawaii at the very end? That’s where the Pacific Plate has slowly moved over a hotspot in the earth’s mantle, which causes seamounts to form, and, occasionally, islands like Midway or Hawaii.
The ridges show the movement of the Pacific plate over the last 75,000,000 years. Kind of slow movement, only about 6,000 km in that time, or 0.000000009132 km/h, about 80 mm/year.
That bend in the L is where the Pacific plate shifted direction 43,000,000 years ago.
In case you’re wondering where it goes as it moves, you can see the trenches on the top and left edges of the plate. Those are subduction zones, including the Marianas Trench, the deepest part of the ocean on earth. That’s where the Pacific plate is moving underneath the other plates, getting recycled very, very slowly.
Notes:
This is something I stumbled across, looking at images Sarah was using for school. I looked over her shoulder, and exclaimed, “Oh my gosh! Look at that! Do you see what that is?!” I love personal moments of discovering the wonders of our universe like that, such as the time as a teen I took a borrowed telescope out one summer night, pointed it at a bright “star,” and discovered I was looking at Jupiter and the Galilean moons.
One of the best parts of the March for Science Sarah and I attended on April 22, 2017, in Washington, D.C., was the nearly endless creativity the marchers put into their signs. Not too many were repeated, and few would have been considered offensive. The preview image here is my sign, cribbed from “Stand back! I’m going to try science!” of XKCD origin.
All the signs we photographed:
[Best_Wordpress_Gallery id=”1″ gal_title=”Signs of Science”]
The TramBot—When my nephew Dave Matheson (a veterinary grad student at Prince Edward Island) stopped in for a day-long visit, we constructed a TramBot that ran on a string stretched across an upstairs room with a light-activated set of “grabsâ€â€”perfect for bombing runs. This was inspired by the “Bomber Fly†seen in assorted Lego media.
Yes, I Always Over-Design
If you’ve seen the Bomber Fly in the Lego publications, then you will immediately notice that my creation is much bigger, and probably heavier. I developed a fear of minimalism after my very first RIS creation quite literally shook itself to pieces in under 10 seconds.
Features and Innovation Details
The forward-reverse pulleys are driven by a belt drive, although a geared drive would have been fine in this case.
There are bumpers connected to touch sensors on each end that reverse the drive pulley motor when triggered. Because the string is at about a 45º angle to the wall, we added the tires to keep the bumper rods from slipping. (Before this was done, the bumpers would sometimes just glance off the wall without triggering the touch sensors, as the robot tried to keep moving.)
We solved the problem of timing on the “grabs†(the name alludes to Gerry Anderson’s Supermarionation Thunderbirds program—see https://www.gis.net/~fm/) by using a belt drive, and setting the motor run time to one second longer than the absolute maximum necessary. This allowed the grabs to automatically re-synchronize, be movable by hand, and grip objects of various sizes.
The grabs are light-triggered. We used the Lego light sensor, and programmed it so that a flashlight beamed on it would trigger the grabs’ open or close sequence. This allowed for precise payload delivery.
My sons Isaac and John, my Nephew Dave, and I perform some final adjustments and testing.
At three years old, my son Isaac might have been the youngest person ever to construct a Lego MindStorms project. Although he calls it a robot, it is more of a contraption than a real robot … but I cannot help but be impressed.
Isaac built this entirely without help—he even connected the RCX to the motor properly on his own. The design is entirely his; I never built anything similar.
Isaac grins as he contemplates his world conquest.
This contraption, which he calls a “punching robot,†uses an assortment of Lego axles that rest within a 40t gear, that is directly mounted on the motor. Attached to several of the outer axles are the shock absorber pieces. These shock absorber pieces extend outward from the central gear when the motor is activated, and will repeatedly punch whatever the robot is placed near.
Remember Scotty’s remark about his nephew in Star Trek II: The Wrath of Khan? (No, of course you don’t.) Scotty explains to Kirk, after an inappropriately emotional response by Midshipman Preston: “My sister’s youngest, Admiral. Crazy to get to space.”
“Come on, R2, we’re going.”
Although I never pursued a career as an astronaut, I certainly remain, “Crazy to get to space,” and the description from Khan still resonates with me. I may yet get there, in my lifetime, especially with companies like SpaceX competing to make the cost of getting to orbit as low as possible.
For now, I’m going to have to settle for a proxy. Eliszabeth* MacDougal, one of the human family members I inherited when I married Sarah Latimer, has a friend, Cian Branco, who offered her the chance to send something small up on the Terrior Improved Orion rocket as part of the RockSat-C program. Eliszabeth realized this would be thrilling to me, and passed along her opportunity.
I ordered a new Lego R2-D2 minifigure, and a few parts to complete another mini-me as an astronaut, and shipped them off to Eliszabeth. They will be going up on Thursday, June 23, 2016, somewhere between 6:00 and 10:00 am, from the NASA facility at Wallops Island, Virginia. (My son, David, and I stood on our roof in the cold in October, 2014, to watch a night launch from Wallops.)
Update: (June 24, 2016) I got up early to watch the launch today! In my mind, I was thinking, Saturn V. Long, slow acceleration. This is, uh, quite a bit smaller, and it zoomed upward so quickly I missed the rocket itself in the launch video screen capture. (The video will be posted soon by NASA/Wallops, anyway.) The crew was worried about missing the launch window due to weather, and debated skipping the camera alignment step. In addition to the pad camera, there was a UAV (drone) flying around, as some of the pictures below show.
The rocket got to its apogee of 119.08 km (74.0 miles) almost immediately. The payload detached successfully, and hit splashdown in the Atlantic, where it would be recovered, only 8 or 9 minutes later.
Update: (June 24, 2016, 16:05) Just got the official word from Cian: “Hey Doug, will send pics a bit later, currently wrecked. Your minis all went up and returned fine. I have pics of reintegration. Cheers!”